1er DEVOIR HARMONISE DE MATHEMATIQUES DU 1er SEMESTRE DUREE: 3 HEURES

EXERCICE 1 : (5 points)

- A) Recopie et complète les propositions suivantes : $(7 \times 0, 5 pt)$
- 1) Pour tout réel α positif et pour nombre réel x on a

$$|x| \le \alpha \Leftrightarrow \dots$$

$$|x| \ge \alpha \Leftrightarrow \dots$$

2) Pour tous réels a et b on a :

$$(a+b)^3 = \dots$$

$$a^3 - b^3 = \dots$$

3) Pour tous réels x et y on a :

$$d(x;y) = \dots$$

- 4) Si A, B, C et D quatre points tels que $\overrightarrow{AB} = \overrightarrow{CD}$ alors
- 5) $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{0} \iff \dots$
- B) Soient \vec{u} et \vec{v} des vecteurs du plan et x et y deux réels. $(2 \times 0, 75 pt)$
- 1) Donner une condition nécessaire et suffisante pour que les vecteurs \vec{u} et \vec{v} soient colinéaires.
- 2) Rappeler deux propriétés sur la distance entre deux réels x et y.

EXERCICE 2: (6 points)

I. Soient a un réel strictement positif, A et B deux réels tels que :

$$A = \frac{\sqrt{5}+2}{\sqrt{5}-2} - \frac{2-\sqrt{5}}{\sqrt{5}+2} et B = a^2 \frac{(\sqrt{5}+\sqrt{3})^2}{8} + a^2 \frac{(\sqrt{5}-\sqrt{3})^2}{8}$$

2. Montrer que
$$B = 2a^2$$
. (1 pt)

II. Résoudre dans IR les équations et inéquations suivantes : $(4 \times 1 \text{ pt})$

a)
$$|x-3| = 5$$
; b) $|2x+1| = -x+2$; c) $|1+2x| \le 5$; d) $|-4x-5| > 1$

EXERCICE 3: (6,5 points)

Soit *ABC* un triangle et I milieu de [*AB*].

Soient les points J et K définis par $\overrightarrow{AJ} = -\overrightarrow{AC}$ et $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BC}$.

2) Montrer que
$$\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$$
. (1 pt)

3) Montrer que
$$\overrightarrow{IK} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$
. (1 pt)

4) En déduire des questions précédentes que les points I, J et K sont alignés. (1 pt)

Soit L le point défini par $\overrightarrow{IL} = 3\overrightarrow{CA} - \overrightarrow{CB}$.

a) Exprimer
$$\overrightarrow{IL}$$
 en fonction de \overrightarrow{AB} et \overrightarrow{AC} . (1 pt)

EXERCICE 4: (3,5 point)

Soit \overrightarrow{ABC} un triangle et x un nombre réel. On considère les points I et J tels que $\overrightarrow{AI} = -\frac{2}{3}\overrightarrow{AB} + x\overrightarrow{AC}$ et $\overrightarrow{AJ} = x\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}$

$$\overrightarrow{AI} = -\frac{2}{3}\overrightarrow{AB} + x\overrightarrow{AC}$$
 et $\overrightarrow{AJ} = x\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC}$

1. Faire une figure pour
$$x = \frac{1}{3}$$
 (1 pt)

- 2. Démontrer que $\overrightarrow{IJ} = \left(x + \frac{2}{3}\right) \overrightarrow{CB}$. En déduire que (IJ) et (CB) sont parallèles. (1 pt)
- 3. Pour quelles valeurs de x a-t-on

a)
$$I$$
 et J confondus. (0,5 pt)

c)
$$IJ = CB$$
. (0,5 pt)

BONNE CHANCE!