Lycée LAMINE GUEYE M. DIACK Série d'exercices sur: Primitives de fonctions continues

EXERCICE 1:

Déterminer pour chacune des fonctions suivantes, l'ensemble des primitives :

1.
$$f(x) = x^3 - 2x + 1$$
; $g(x) = x^2 + 5x + 4$

2.
$$f(x) = \sin 2x - 2\cos 2x$$
; $g(x) = \sin 3x$; $h(x) = \cos 2x$

3.
$$f(x) = \frac{2}{x^2} - \frac{3}{x^3}$$
; $g(x) = -\frac{1}{x^2} + 2x + 3$

4.
$$f(x) = \frac{2x}{(x^2+1)^2}$$
; $g(x) = \frac{1-x}{(x^2-2x+3)^2}$

5.
$$f(x) = \frac{x}{\sqrt{x^2 - 1}};$$
 $g(x) = \frac{2x + 3}{\sqrt{x^2 + 3x + 2}}$

6.
$$f(x) = \sin x \cos^3 x$$
;

7.
$$g(x) = (2x - 3)(x^2 - 3x + 5)^5$$

8.
$$f(x) = \frac{\cos x}{\sin^2 x}$$
; ; $g(x) = \frac{4x+3}{(2x^2+3x+1)^3}$

EXERCICE 2:

A/Soit la fonction f définie sur IR - {-2; 2}

$$f(x) = \frac{3x^2 + 4}{\left(x^2 - 4\right)^3}$$

1. Déterminer les réels a et b tels que pour tout réel x distincts de -2 et 2 :

$$f(x) = \frac{a}{(x-2)^2} + \frac{b}{(x+2)^2}$$

2. En déduire la primitive de f vérifiant F(0) = 1.

B/On donne la fonction:

$$f(x) = \frac{x^3 - x^2 - 8x + 8}{(x - 2)^2}$$

1. Déterminer trois réels a, b et c tels que : pour tout x de $IR\setminus\{2\}$:

$$f(x) = ax + b + \frac{c}{(x-2)^2}.$$

2. En déduire les primitives de f sur I =]2; $+\infty$ [.

EXERCICE 3:

A/ On considère la fonction f telle que : $f(x) = a\cos x + b\cos^3 x$, avec a et b des nombres réels.

Page 1 sur 2

1. Calculer f'(x) et f''(x).

2. Comparer f(x) et f''(x). En déduire les primitives de f.

B/-soit la fonction $h(x)=2\sin^2 x \cos^2 x$. Déterminer la primitive H de h(x) sur IR vérifiant $H\left(\frac{\pi}{4}\right) = 0$

1. On donne $f(x) = \cos^4 x$ et $g(x) = \sin^4 x$. Montrer que $g(x) = \cos 2x$

Montrer que f(x)+g(x)+h(x)=1

2. Montrer que $f(x) = \frac{1 + \cos 2x - h(x)}{2}$

3. Déterminer l'ensemble des primitives de

4. Déterminer la primitive F de f vérifiant F $\left(\frac{\pi}{4}\right) = 0$

5. Montrer que g(x)= $\frac{1-\cos 2x - h(x)}{2}$

Déterminer la primitive G de g(x) vérifiant G

EXERCICE 4:

A. On considère les fonctions f et g définies sur IR par : $f(x) = \cos x \sin 3x$ et $g(x) = \sin x \cos 3x$

1. Vérifier que la fonction f – g s'écrit sous la forme sin(u) où u est une fonction que l'on précisera. En déduire une primitive sur IR de f – g.

2. Déterminer une primitive sur IR de f +

3. En déduire les primitives sur IR de f et

B. Soit $h(x) = \sin^2 x \cos^3 x$ 1. Montrer que $h(x) = (\sin^2 x - \sin^4 x)$

2. En déduire une primitive H de h sur

IR.

COSX

Copyright@2023_Monsieur DIACK (Mathématiques)

EXERCICE 5:

Soit la fonction f définie sur l'intervalle [0;

$$f(x) = \frac{x^2 + 1}{x^2 + x + 1}$$

On appelle C sa courbe représentative.

- 1. a. Etudier les variations de f sur $[0;+\infty[$
 - b. Montrer que C admet une droite asymptote.
- 2. Soit F la primitive de f sur $[0; +\infty[$ telle que F(0) = 0. On ne recherche pas à exprimer F(x)
- a. Pourquoi peut-on affirmer l'existence de F sur $[0;+\infty[$?
- b. Quelles sont les variations de F sur $[0;+\infty[$?
- 3. On définit sur $[0;+\infty[$ les fonctions H et K par : H(x)=F(x)-x et $K(x)=F(x)-\frac{2}{3}X$
- a. Etudier, sur $[0; +\infty[$, les variations de H et K.
 - b. En déduire que, pour tous ≥ 0 ; On a : $\frac{2}{3}$

$$x \le F(x) \le x.$$

- c. En déduire la limite de F en +∞
- 4.a . Démontrer que l'équation $f(x) = \pi$ admet une solution unique α sur $[0; +\infty[$.
 - b. Montrer que l'on peut préciser

$$\pi \le \alpha \le \frac{3}{2}\pi$$

EXERCICE 6:

On donne $f(x) = 2\sin 3x + 6\cos x - 3\cos 2x$

- 1. Montrer que $f'(x) = 12\cos x (\cos 2x + \sin x)$
- 2. En déduire le signe f'(x) sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 3. Trouver une primitive F(x) de f(x) sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$
- 4. En déduire la primitive de f(x) s'annulant en $\frac{\pi}{3}$

EXERCICE 7:

1. Soit f la fonction définie par :

$$\begin{cases} f(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}, si; x \neq 0 \\ f(0) = 0 \end{cases}$$

a- Démontrer que f n'est pas continue en 0.

b- Démontrer que la fonction F définie par

$$\begin{cases} F(x) = x^2 \sin \frac{1}{x}, si; x \neq 0 \\ F(0) = 0 \end{cases}$$
 est une primitive

de f.

2. Soit g la fonction définie par :

$$\begin{cases} g(x) = 1, si; x \neq 0 \\ g(0) = 1 \end{cases}$$

- a- Démontrer que g n'est pas continue en 0.
- b- On suppose que g admet une primitive G sur IR.
- c- Démontrer que G est constante sur]- ∞ ; 0[et]0; $+\infty$ [.

EXERCICE 8:

1. Déterminer une primitive de chacune des fonctions suivantes:

F(x) =-2 (-2x + 1)⁵; g(x) =
$$x^3(x^4 - 1)^2$$

 $h(x) = \frac{2x-1}{\sqrt{x^2 - x}}$; $k(x) = \frac{3x^2 + 4x - 2}{x^4}$,

$$l(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2},$$
 $m(x) = (2x-3)(x^2-3x-6)^2$

$$u(x) = \frac{3x}{\sqrt{x^2 - 1}};$$
 $v(x) = \frac{3}{(3x + 4)^3}$

$$s(x) = \frac{6x - 9}{\left(x^2 - 3x + 2\right)^4} \; ;$$

$$t(x) = \frac{1}{3}(5x^4 + 1)\sin(x^5 + x)$$

$$P(x) = \sin(3x + \frac{3\pi}{2});$$
 $q(x) = \frac{1}{x}\sin\frac{1}{x}$

A(x) =
$$\sin^4 x \cos^5 x$$
; b(x) = $\sqrt{1-x}$

$$r(x) = \frac{3}{\sqrt[3]{2x-1}}$$
; $n(x) = \sin x \cos^2 x$

- 2. On donne: $f(x) = \frac{x^3 x^2 8x + 8}{(x-2)^2}$
- a- Déterminer trois réels, a, b et c tels que : $\forall x \in IR-\{2\}, \ f(x) = ax + b + \frac{c}{(x-2)^2}$
- b- En déduire les primitives de f sur]2 ; $+\infty$ [