DEVOIR Nº1 DE MATHEMATIQUES DU SECOND SEMESTRE. DUREE :4H

EXERCICE 1: (8 POINTS (1 point par question))

Résoudre dans IR les équations, inéquations et systèmes ci-dessous :

a)
$$x^2 + x - 2 = 0$$
 ; **b)** $x^2 - 5x + 7 = 0$; **c)** $4x^2 + 12x + 9 = 0$

d)
$$(x - x^2)^2 - 9(x - x^2) - 10 = 0$$
; **e**) $3\left(\frac{x-2}{x}\right)^2 - 7\left(\frac{x-2}{x}\right) + 4 = 0$

f)
$$x^4 - 11x^2 + 18 = 0$$
; g) $\frac{x^2 + 6x - 7}{-9x^2 + 6x - 1} \le 0$; h) $\begin{cases} -2x^2 - 5x + 3 \le 0 \\ x^2 + 3x - 4 \le 0 \end{cases}$

EXERCICE 2: (2 POINTS (1 point par question))

1) Résoudre dans IR² le système suivant :
$$\begin{cases} x + y = -1 \\ x^2 + y^2 = 13 \end{cases}$$

2) Résoudre dans IR² par la méthode de CRAMER le système suivant : $\begin{cases} mx + y = -2m \\ x + my = m - 1 \end{cases}$ Où m est un paramètre réel .

EXERCICE 3: (5 POINTS)

On considère l'équation (E): $(m+1)x^2 + 2mx + m + 1 = 0$

- 1) Etudier suivant les valeurs de m l'existence des solutions de (E). 1pt
- 2) Montrer que si (E) admet deux solutions distinctes x_1 et x_2 , elles vérifient une relation indépendante de m. 1pt
- 3) Déterminer m pour que les racines vérifient :

a)
$$x_1^2 + x_2^2 = 1$$
; b) $x_1 + x_2 = 5x_1x_2$; c) $(2x_1 - 1)(2x_2 - 1) = 6$. **1pt x 3**

EXERCICE 4: (5 POINTS)

A tout réel m on associe la droite (D_m) :(2m-1)x+(3-m)y-7m+6=0

1) Dans chacun des cas ci-après détermine m pour que :

a)
$$(D_m)$$
 passe par $A(1;1)$.

b)
$$(D_m)$$
 passe par l'origine du repère. **0,5pt**

c)
$$(D_m)$$
 soit parallèle à l'axe des abscisses. 0,5pt

d)
$$(D_m)$$
 soit parallèle à l'axe des ordonnées. **0,5pt**

2) Démontrer qu'il existe un point
$$K$$
 qui appartient à tous les droites (D_m) .

3) Trouver
$$m$$
 pour que (D_m) ait un coefficient directeur égal à un réel $\,c\,$ donné. 1pt

4) Toutes les droites qui passent par
$$K$$
 sont-elles des droites (D_m) .